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Abstract. In a polymer chain, an extra electron or hole distorts the chain to form a charged polaron,
which is the charge carrier being responsible for conductivity. When an intermediate-strength electric
field is applied, the polaron will be accelerated for a short time and then move at a constant velocity.
The dynamical process of polaron in a polymer chain with impurities is simulated within a non-adiabatic
evolution method, in which the electron wave function is described by the time-dependent Schrödinger
equation while the polymer lattice is treated classically by a Newtonian equation of motion. We have
considered two kinds of dynamical processes, one is the field-induced depinning of a charged polaron,
which is initially bound by an attractive impurity; and the other is the scattering of a polaron from an
impurity. In the former process, the charged polaron will depart from the attractive impurity only for the
applied field with strength over a threshold, otherwise, the polaron will oscillate around the impurity. In
the latter process, the charged polaron moves through the impurity in the presence of an electric field while
it will be bounced back for a repulsive impurity or trapped to oscillate around an attractive impurity in
the case that the applied electric field is weak and just be present for the polaron acceleration.

PACS. 71.38.-k Polarons and electron-phonon interactions – 72.80.Le Polymers; organic compounds
(including organic semiconductors)

1 Introduction

In recent years, organic electronic devices, e.g., light-
emitting diodes and field-effect transistors, are attract-
ing considerable interest because they have processing and
performance advantages for low-cost and large-area appli-
cations [1]. In these devices, organic polymers are used as
the light-emitting and charge-transporting layers, in which
the electron and/or hole are injected from the metal elec-
trodes and transported under the influence of an external
electric field. Due to the strong electron-lattice interac-
tions, it is well known that additional electrons or holes in
conjugated polymers will induce self-localized excitations,
such as solitons [2] (only in trans-polyacetylene) and po-
larons [3]. As a result, it has been generally accepted that
the charge carriers in conjugated polymers are these exci-
tations including both charge and lattice distortion [4].

There have been extensive studies on soliton and po-
laron dynamics in conjugated polymers [5–10] under the
influence of external electric fields. It is shown that soli-
tons as well as polarons keep their shape while moving
along a chain. Solitons are shown to have a maximum ve-
locity 2.7vs, where vs is the sound velocity [6,11]. The
situation will be different for polarons, which has been
shown to be not created in electric fields over 6×104 V/cm
due to the charge moving faster and not allowing the dis-
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tortion to occur [7]. A recent study by Johansson and
Stafström [8] deals with the polaron migration between
neighboring polymer chains. The numerical results show
that the polaron becomes totally delocalized, either be-
fore or after the chain jump for the electric field over
3 × 105 V/cm. However, a preexisted polaron in a single
chain can survive under the field up to 106 V/cm [9,12].

While the stability of polaron motion under the influ-
ence of an external electric field has been discussed, we
investigate the dynamics of polaron in a polymer chain
with impurities in this paper. Electric field induced de-
pinning of a charged soliton from an impurity center in
polyacetylene has been considered by Terai and Ono [13].
It should be much more interesting for the polaron dynam-
ics than that of solitons since the latter is only appeared
in the degenerate polymers, such as trans-polyacetylene.
Recently, the motion of polarons (as well as bipolarons)
under the influence of an electric field through a single-
site impurity was also discussed by considering the impu-
rity molecules functioning as logical switches [14]. In this
paper, two kinds of impurities are considered, one is a
single-site impurity and the other is a multi-site impurity.
With an attractive impurity, the charged polaron will be
bound around the impurity. Both of the depinning and
scattering processes are simulated within a non-adiabatic
dynamical evolution method, in which the electron wave
function is described by the time-dependent Schrödinger
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equation while the lattice is treated classically by a New-
tonian equation of motion.

The paper is organized as follows. In the following sec-
tion, we present a tight-binding one-dimensional model
for a polymer chain with impurities in an external elec-
tric field and then describe the non-adiabatic dynamical
evolution method. The polaron configuration and its ener-
gies in the presence of an impurity are given in Section 3.
The depinning and scattering processes of the charged po-
laron from an impurity are presented in Sections 4 and 5,
respectively, and the summary of this paper is given in
Section 6.

2 Model and method

We consider a tight-binding one-dimensional model for a
polymer chain that contains an impurity in an external
filed. The Hamiltonian consists of three parts,

H = He + Hlatt + Him. (1)

The electronic part is

He = −
∑

n

tn

[
e−iγA(t)c†n+1cn + h.c.

]
, (2)

where c†n (cn) creates (annihilates) an electron at site n,
tn = t0−α(un+1−un) is the hopping integral [2] between
sites n and n+1, α describes the electron-lattice coupling
between neighboring sites due to the lattice bond stretch,
and un is the monomer displacement of site n. The vector
potential A(t) is introduced to describe a uniform external
electric field along the chain at the periodic boundary con-
dition, the relation between the potential A(t) and the uni-
form electric field E(t) is given as E(t) = −(1/c)∂A(t)/∂t,
γ ≡ ea/�c is a constant quantity, c is the light speed, e the
absolute value of the electronic charge, and a the lattice
constant. The polymer lattice is described by

Hlatt =
K

2

∑

n

(un+1 − un)2 +
M

2

∑

n

u̇2
n, (3)

where K is the elastic constant and M the mass of a
CH group [2]. The model parameters we use in this work
are those generally chosen for trans-polyacetylene [2,4]:
t0 = 2.5 eV, α = 4.1 eV/Å, K = 21 eV/Å2, M =
1394.14 eV fs2/Å2, and a = 1.22 Å. The impurity is de-
scribed by

Him =
∑

n

Vnc†ncn, (4)

where Vn is the strength of impurity potential at the nth
site. For negative charged polaron, the impurity is attrac-
tive for Vn < 0 while it is repulsive for Vn > 0. Two kinds
of impurities are considered in this work: one is a single-
site impurity; the other is a multi-site impurity.

In the absence of an external electric field, we can de-
termine the static structure by the minimization of the

system energy. First, we can write down the electron eigen-
equation for a given lattice configuration ({un}) as

εµφµ(n) = −tnφµ(n + 1)− tn−1φµ(n− 1)+ Vnφµ(n), (5)

from which we can obtain all electron wave functions
({φµ(n)}) and then the static energy of the system

Et = −
∑

n

tn(ρn,n+1+ρn+1,n)+
K

2

∑

n

(un+1−un)2, (6)

here, ρn,n′ is the element of density matrix, which will be
defined below. The lattice configuration ({un}) is deter-
mined by ∂Et/∂un = 0, which gives the self-consistent
iteration equations

un+1 − un = − α

K
(ρn,n+1 + ρn+1,n) + λ, (7)

where λ is a Lagrangian multiplier to guarantee that the
polymer chain with the periodic boundary condition will
not collapsed, that is, the chain length will not changed
[
∑

n (un+1 − un) = 0].
Once an electric field is applied along the polymer

chain, the initial lattice configuration and the electron dis-
tribution determined by the self-consistent iteration equa-
tions (5) and (7) will not be kept. The lattice configuration
at any time t (> 0) should be governed by the Newtonian
equation of motion,

Mün = Fn(t), (8)

where the force acting on the nth site consists of two parts,
one is the spring force from the bond stretch or compres-
sion and the other is the force from the electron-lattice
interaction that could be obtained within the Hellmenn-
Feynman theorem,

Fn(t) = −K(2un − un+1 − un−1)

+ α
[
eiγA(t) (ρn,n+1 − ρn−1,n) + c.c.

]
, (9)

here, the element of the density matrix is defined as

ρn,m(t) =
∑

k

Ψ∗
k (n, t)fkΨk(m, t), (10)

fk is the time-independent distribution function deter-
mined by initial occupation (being 0,1 or 2). The evolution
of the electronic wave function Ψk(n, t) is determined by
the time-dependent Schrödinger equation

i�Ψ̇k(n, t) = −tne−iγA(t)Ψk(n + 1, t)

− tn−1e
iγA(t)Ψk(n − 1, t) + VnΨk(n, t). (11)

The numerical integration of equation (8) is quite straight-
forward. We discretize the time variable, and express the
discretized time as tj and the time interval as ∆t. The dis-
placement un(tj+1) and the velocity u̇n(tj+1) of the nth
site at next time tj+1 ≡ tj + ∆t can be written as

un(tj+1) = un(tj) + u̇n(tj)∆t, (12)
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and
u̇n(tj+1) = u̇n(tj) +

1
M

Fn(tj)∆t (13)

respectively. It is clear from this treatment that ∆t should
be small enough compared to the characteristic time of the
lattice vibration (i.e., ∆t � ω−1

Q , here ωQ ≡ √
4K/M is

the bare optical phonon frequency).
Because the electronic wave functions Ψk(t)’s are not

eigenfunctions, the numerical integration of equation (11)
is not so straightforward and has to be handled more deli-
cately. If the single particle Hamiltonian operator at time t
is expressed as ĥ(t), then the solution of the time depen-
dent Shrödinger equation can be written schematically as

Ψk(t) = T̂ exp
[
− i

�

∫ t

0

dt′ĥ(t′)
]

Ψk(0), (14)

where T̂ represents the time ordering operator. If we dis-
cretize time and choose the interval ∆t small enough, so
that ĥ(t) changes slightly during ∆t, i.e., we can treat ĥ(t)
as a constant during the time period from tj to tj+1. Then
the above equation can be rewritten as follow,

Ψk(tj+1) = exp [−iĥ(tj)∆t/�]Ψk(tj). (15)

In order to solve equation (15), we choose the instanta-
neous eigenfunctions {φν} of ĥ(tj) as basis set and ex-
pand Ψk(tj) in terms of {φν}. The eigenfunctions {φν}
and eigenvalues {εν} are obtained through solving the
Shrödinger equation of ĥ(tj) similarly as the static case
equation (5). Then equation (15) can be rewritten into
the following form

Ψk(tj+1) =
∑

ν

〈φν |Ψk(tj)〉 exp[−iεν∆t/�]φν . (16)

Thus, the evolution of electronic wave functions and lat-
tice configuration is determined completely by solving
equations (12), (13) and (16) with a recursive trick.

3 Polaron configuration and impurities

In this section, we present the static results of a polaron
in a polymer chain with an impurity. We will consider the
chain consisted of 200 sites and 201 electrons in the fol-
lowing calculations. By the self-consistent iteration equa-
tions (5) and (7), we may first determine the polaron con-
figuration ({u0

n}) in the chain without any impurities. As
we have said in the previous section, two kinds of impu-
rities are considered. We discuss here their effects on the
polaron configuration and binding energies.

3.1 Single-site impurity

In this subsection, we consider a single-site impurity in
the polymer chain. For that,

Vn = Vimδn,Nim , (17)

 

Fig. 1. Energy changement due to the presence of a single-site
impurity for a fixed polaron configuration, which is obtained
self-consistently in a polymer chain without any impurities.
The inset shows the charge distribution of the polaron.

where Vim is the impurity strength and Nim its location.
Before we present the optimized lattice configuration in
the presence of an impurity, we calculation the energy
changes due to the impurity at different positions for the
fixed polaron configuration ({u0

n}), which is shown in Fig-
ure 1 for the impurity strength Vim ranging from −0.25 eV
to 0.25 eV. It is clear that the impurity is attractive to the
negative charged polaron for the strength Vim being nega-
tive while it is repulsive for the positive impurity strength
Vim. An interesting thing is that the energy change reaches
its maximum not for the single-site impurity locating the
center of the polaron but a few sites away from the cen-
ter. It will not be strange if we compare it with the charge
density distribution ρn(≡ ρn,n − 1) of the polaron, which
is shown in the inset of Figure 1.

For an attractive impurity in a polymer chain, we can
do a similar calculation by using the equations (5) and (7)
to obtain the optimized lattice configurations, which is a
polaron binding by the impurity. In Figure 2, we show the
polaron lattice configurations yn, which is the average of
bond length changes defined as

yn =
1
2
(−1)n(2un − un+1 − un−1), (18)

in the presence of a single-site impurity located at the
100th site. It will be not strange that the polaron deviates
from the impurity since the energy change doesn’t reach
its maximum when the impurity locates at the polaron
center as shown in Figure 1. The inset in Figure 2 shows
the binding energy of the polaron, which is linear with the
impurity strength at the range we consider in this paper.
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Fig. 2. Optimized polaron configurations in the presence of
a single-site impurity, which is located at the 100th site. The
inset shows the dependence of polaon binding energies on the
impurity strength.

3.2 Multi-site impurity

The second kind of impurities we consider is defined as

Vn = Vim exp
[
−|n − Nim|

nw

]
, (19)

which is a multi-site impurity centered in the site Nim,
nw serves as the impurity width, and Vim the impurity
strength as the one in the single-site impurity. In the cal-
culation, we take nw = 5, which is large enough so that the
impurity makes the big difference with that of a single-site
impurity, and Vim varies at the same range from −0.25 eV
to 0.25 eV. In Figure 3, we show the energy change versus
the location of a multi-site impurity for a fixed polaron
configuration. It is clear that there is only one energy ex-
tremum point due to the multi-site impurity potential,
which smears out the difference of the charge densities at
these sites. The optimized polaron configurations in the
presence of an attractive multi-site impurity are presented
in Figure 4. The deviation of the polaron from the impu-
rity disappears for the multi-site impurity. The inset in
Figure 4 shows the binding energies for impurities with
different strengths, which is again almost linear since the
impurity strength is not strong.

4 Polaron depinning

In this section, we present the result of polaron depin-
ning from an attractive impurity induced by applied elec-
tric fields. In the simulation, the impurity is set to locate
at the 50th site, and the impurity strength ranges from
−0.05 eV to −0.25 eV. The initial lattice configuration is
the negative charged polaron that is optimized with an
impurity centered at the 50th site.

Fig. 3. Energy changement due to the presence of a multi-site
impurity for a fixed polaron configuration, which is obtained
self-consistently in a polymer chain without any impurities.

Fig. 4. Optimized polaron configurations in the presence of
a multi-site impurity which is centered at the 100th site. The
inset shows the dependence of polaon binding energies on the
impurity strength.

In order to show the polaron motion, we define the
charge center xc of a polaron in a polymer chain with the
periodic boundary condition,

xc =






Nθ/2π, if 〈cos θn〉 ≥ 0 and 〈sin θn〉 ≥ 0;

N(π + θ)/2π, if 〈cos θn〉 < 0;

N(2π + θ)/2π, otherwise,
(20)

where

θ = arctan
〈sin θn〉
〈cos θn〉 , (21)

and the average of sin θn and cos θn are defined as

〈sin θn〉 =
∑

n

ρn sin θn, 〈cos θn〉 =
∑

n

ρn cos θn (22)
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Fig. 5. Temporal evolution of the polaron charge center in
the presence of a single-site impurity (Vim = −0.25 eV and
Nim = 50) under different electric fields. The inset shows the
threshold field over which the polaron depins from the impurity
with different strengths.

with the probability weight ρn(≡ ρn,n − 1) and θn =
2πn/N , and N is the number of a polymer chain.

In Figure 5, we show the temporal evolution of the
polaron charge center in the presence of a single-site im-
purity under different electric fields. It can be seen that
there exists a threshold field, which is estimated to be
0.7×105 eV/cm for the impurity strength Vim = −0.25 eV.
The value of the threshold field is almost linear with the
impurity strength (see the inset in Fig. 5). Once the ap-
plied electric filed is weaker than the threshold field, such
as E = 0.5 × 105 V/cm, the charged polaron oscillates
around the impurity. A period of 168 fs is observed and
the corresponding angular frequency is 0.97ωQ. The oscil-
lation amplitude is 2.4a. However, when the applied elec-
tric filed is stronger than the threshold, the polaron will
be depinned from the impurity. And then the polaron will
move as the same as in a polymer chain without impuri-
ties, and a mobile multi-breather state is excited by the
motion of the polaron in an electric field [10].

In Figure 6, we show the temporal evolution of the
polaron charge center in the presence of a multi-site im-
purity. The center of this impurity Nim is set to be 50
and the impurity strength Vim is chosen to be −0.05 eV.
The initial polaron is the configuration that is optimized
with the multi-impurity centered at the 50th site. A sim-
ilar picture is found as the case with a single-site impu-
rity for the impurity strength is weak. For an impurity
with a strong strength, for example, Vim − 0.25 eV, no
threshold field be found since a stronger field will dissoci-
ate the polaron [7,8]. But for the impurity strengths from
Vim = −0.05 eV to −0.15 eV, the threshold fields exist
and showed in the inset of Figure 6, from which we can
see that these values are much higher than that of the
single-site impurity cases. For E = 0.5 × 105 V/cm, the
electric filed is weaker than the threshold field, the charged
polaron oscillates around the impurity with a period of

Fig. 6. Temporal evolution of the polaron charge center in
the presence of a multi-site impurity (Vim = −0.05 eV and
Nim = 50) under different electric fields. The inset shows the
threshold field over which the polaron depins from the impurity
with different strengths.

214 fs, which corresponds the angular frequency 0.76ωQ.
The oscillation amplitude is 3.3a. A smaller angular fre-
quency and a lager amplitude are caused by the smoother
potential of the multi-site impurity.

5 Polaron scattering

In this section, we consider the polaron scattering from
an impurity, that is, the polaron is set at the place far
away from the impurity at t = 0. In order to reduce
the lattice vibration in the accelerated process of the
charged polaron, the electric field is turned on and off
smoothly, that is, the field strength changes as E(t) =
E exp

[−(t − tc)2/t2w
]

for 0 < t < tc, E(t) = E for
tc < t < toff , and E(t) = E exp

[−(t − toff)2/t2w
]

for
t > toff with tc being a smooth turn-on period, tw the
width, and toff the time of the filed being turned off. In
the calculation, we take tc = 30 fs and tw = 10 fs. We
have considered two processes for the polaron scattering,
that is, the polaron collides with the impurity in the ab-
sence and presence of an electric field, respectively. In the
former case, the electric field acts only for the acceleration
of the polaron, so that the value of toff is taken as a finite
time period while it is taken as an infinite value in the
latter case.

Now, we present results of the polaron scattering. In
Figure 7, we show the temporal evolution of the charge
center in the presence of a single-site repulsive impurity.
The impurity strength Vim = 0.25 eV. A negative charged
polaron is set at the 50th site at t = 0 and the impurity is
located at the 150th site. First of all, we notice that the po-
laron bounces against the repulsive impurity potential in
the case a weak electric field, such as E = 0.3×105 eV/cm,
is applied only for the acceleration of the polaron (see the
solid line in Fig. 7). However, the polaron will pass through
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Fig. 7. Time evolution of the polaron charge center in the
presence of a single-site repulsive impurity (Vim = 0.25 eV and
Nim = 150) under the electric field with different strength.

Fig. 8. Time evolution of the charge center in the presence of
a multi-site repulsive impurity (Vim = 0.05 eV and Nim = 150)
under the electric field with different strength.

the impurity in the presence of the electric field (see the
long dash line in Fig. 7). If the electric is higher, the po-
laron passes through the impurity no matter the electric
field is turned off at some time or not. The critical value
of the field is estimated to be 0.4 × 105 eV/cm. A similar
picture is found for the polaron scattering from a multi-
site repulsive impurity. We show it in Figure 8, where the
impurity strength and the electric field strengths are dif-
ferent with that in Figure 7. For this multi-site impurity,
the critical value of the field is about 0.7 × 105 eV/cm.

The situation will be different for the polaron scat-
tering from an attractive impurity. In Figure 9, we show
the temporal evolution of the charge center in the pres-
ence of a single-site attractive impurity. The impurity is
located at the 150th site and the strength Vim = −0.25 eV.
Now the polaron will be bound by the attractive im-
purity in the case a weak electric field (for example,
E = 0.3 × 105 V/cm) is applied only for the accelera-

Fig. 9. Time evolution of the charge center in the presence of
a single-site attractive impurity (Vim = −0.25 eV and Nim =
150) under the electric field with different strength.

Fig. 10. Time evolution of the charge center in the presence
of a multi-site attractive impurity (Vim = −0.05 eV and Nim =
150) under the electric field with different strength.

tion of the polaron (see the solid line in Fig. 9 and that
in the inset). All others are the same as that for a re-
pulsive impurity in Figure 7. When the polaron is bound
by the attractive impurity, it will oscillate around the im-
purity since the energy is surplus as shown in the inset of
Figure 9. The oscillation period is about 177 fs, which cor-
responds an angler frequency of 0.92ωQ. The amplitude is
about 4.0a. In Figure 10, we show the charge center evo-
lution in the presence of a multi-site attractive impurity,
the central strength of which is −0.05 eV. The critical val-
ues for attractive impurities are almost the same as that
for repulsive impurities. The oscillation period is about
276 fs, which corresponds an angler frequency of 0.59ωQ.
The amplitude is about 12.0a. A much smaller angular
frequency and a much lager amplitude are again caused
by the smoother potential of the multi-site impurity.
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6 Discussion and summary

In this work, we have investigated the dynamics of a
charged polaron in a polymer chain with impurities under
the influence of an electric field. Two kinds of impurities,
a single-site and a multi-site ones, are considered. The
multi-site impurity should be more realistic in polymers.
The results for these two kinds of impurities are found
qualitatively same. As is well known, the polaron will be
dissociated by a stronger field [7–9]. For this reason, we
only consider the electric fields with strengths between
0.1× 105 eV/cm and 2.0× 105 eV/cm, (a smaller electric
field is not considered since it will take too much CPU time
in the calculations) and then the impurity strengths are
chosen between ±0.25 eV. As usual, the electron-electron
interaction is thought to be not negligible. Actually, it is
really a challenge to include the electronic correlation in a
dynamical study while no qualitative difference be found
if the interaction is treated only within a mean-field ap-
proximation, that is the reason why we don’t include the
interaction in this work. In reference [14], the impurity
molecules were considered to function as logical switches
and polarons (as well as bipolarons) are used as informa-
tion carriers, so that the impurity molecule can work as a
gate to the passage of charged polarons or bipolarons, i.e.,
it can control the charge transport. Our study points out
that the polaron is trapped by the attractive impurity only
for the case a weak electric field is presented for the accel-
eration of the polaron while the polaron will pass through
the impurity in the case the same electric field is kept on.
The result is also consistent with that the pinned polaron
will be dragged away by a relative stronger electric field.
In the other hand, we also consider the polaron scattering
from a repulsive impurity. A new picture that the polaron
may bounce against the repulsive impurity is found in the
same condition for the polaron being trapped by the at-
tractive impurity. In the sense, this work offers a complete
picture for the dynamics of a polaron in a polymer chain
with impurities.

In summary, we simulate the dynamical process of
polaron in a polymer chain with impurities within a non-
adiabatic evolution method, in which the electron wave
function is described by the time-dependent Schrödinger
equation while the the polymer lattice is treated classically
by a Newtonian equation of motion. We have considered
two kinds of dynamical processes, one is the field-induced
depinning of a charged polaron, which is initially bound

by an attractive impurity; and the other is the scattering
of a polaron from an impurity. In the former process, the
charged polaron will depart from the attractive impurity
only for the applied field with strength over a threshold,
otherwise, the polaron will oscillate around the impurity.
In the latter process, the charged polaron moves through
the impurity in the presence of an electric field while it
will be bounced back for a repulsive impurity or trapped
to oscillate around an attractive impurity in the case that
the applied electric field is weak and just be present for
the polaron acceleration.
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